需要强注意的是目前媒体普遍认为的生物芯片(micro-arrays),如,基因芯片、蛋白质芯片等只是微流量为零的点阵列型杂交芯片,功能非常有限,属于微流控芯片的特殊类型,微流控芯片具有更广泛的类型、功能与用途。
微流控芯片具有液体流动可控、消耗试样和试剂极少、分析速度成十倍上百倍地提高等特点,它可以在几分钟甚至更短的时间内进行上百个样品的同时分析,并且可以在线实现样品的预处理及分析全过程。3D打印的一个技术趋势是走向微小,本期,3D科学谷与谷友一起来盘点下3D打印在微流控芯片技术领域做了些啥?
芯片上
的微型实验室
3D打印基于毛细驱动的微流控芯片
对于纸基微流控芯片来说,毛细驱动的优点是不需要外界泵驱动,体积小,成本低,非常适合于Point-of-Care(POC)系统等资源紧缺的应用场合。但毛细驱动的缺点是流动场都被动的由毛细力控制,无法实现复杂的流动控制及流场的可编程。通过3D打印可以将2D的纸基微流控芯片扩展到3D尺度。维数的增大带来的优势是我们可通过调控其流道深度来实现流速的可控(流场的可编程)。
一系列的实验证实该芯片可以是目前2D纸基微流控芯片的有效补充,该芯片适合于希望以无驱方式简化流体驱动的同时又希望能实现一些复杂的流动控制。
Dolomite打印微流控芯片的3D打印机
Fluidic Factory是全球第一台可以打印流体密封装置的商用3D打印机,能够提供快速、简便、可靠的打印服务,每片芯片的打印成本仅需1美元。所用3D打印材料是经美国食品药品监督管理局(FDA)批准的一种坚固且半透明的材料,名为环烯烃共聚物(COC),对3D打印设备而言,这种材料容易获取而且价格便宜,几乎适用于所有应用。
Fluidic Factory的设计易于使用,可以让流体密封装置快速成型,如芯片、传感器分析盒、流管、阀、连接器和医疗器械。它所配备的智能软件和创新型硬件确保了流道的密闭性,并允许用户创建精确的几何通道和多样化的功能,这对刻蚀、压印、注塑和机械加工技术而言是不可能完成的任务。
图片:Fluidic Factory
用户可以从Fluidic Factory的设计库中选择现有的设计,或使用任何CAD软件来创造并打印独一无二的芯片。因为设计完全灵活,Fluidic Factory具有非常广泛的应用,包括器官芯片、即时诊断、药物研发、教育、化学合成和分析以及生物医学测定等领域。
此外,Optomec气溶胶喷射技术可3D打印微米级智能结构,该技术将应用于电子和生物医药行业,在开发成本更低、尺寸更小的下一代产品方面拥有巨大的应用前景。
3D打印结合微流控芯片加速药物检测
具体来说,科学家们建立了一个三维装置,将肝细胞包围在一个可以模仿ECM的生物聚合物中。肝细胞被UV交联水凝胶溶液混合在一起,放入装置内,实施定域光聚合技术,在原位生成组织结构。使用水凝胶是因为它能“特殊模仿自然ECM的特性,”根据研究显示。该结构在装置内可保持7天稳定。
研究人员随后用0-500mM的乙醇,与上述结构混合进行毒理学分析。研究人员发现,乙醇的量对细胞活力有系统的影响。此外,对肝功能的分析评估表明,增加乙醇暴露后,人体血清白蛋白和尿素的输出量有显着减少。
除了弗吉尼亚理工大学-维克森林大学,在微流控芯片领域活跃的科研机构不在少数。美国康涅狄格大学等机构的科学家在Towards Single-Step Biofabrication of Organs on a Chip via 3D Printing(通过3D打印技术进行器官生物芯片的一步制造)一文中描述到,传统的微流控芯片制造技术是劳动密集型的产业,不利于实验室进行芯片设计的快速迭代和快速制造。将3D打印技术用于制造微流控生物芯片则可以在几个小时内实现微型流体通道的快速制造,有利于设计的快速迭代,提高了基于微流控研究的跨学科性,并加速创新。
生物3D打印技术在制造复杂3D人体组织结构方面具有潜力。微流控系统可以为3D 组织提供营养、氧气和生长因子。未来,先进的生物3D打印机不仅可以打印微流控平台,还可以同时在微流控平台中直接打印出定制化的微观人体组织。